
The string breaks when the tension reaches the critical value of T1 = 2.80 N. The preceding equation can be

solved for the critical mass m that breaks the string:

m = 2.5
5

T1
g − M = 2.5

5
2.80 N

9.8 m/s2 − 0.042 kg = 0.277 kg = 277.0 g.

Significance

Suppose that the mechanical system considered in this example is attached to a ceiling inside an elevator going
up. As long as the elevator moves up at a constant speed, the result stays the same because the weight w does

not change. If the elevator moves up with acceleration, the critical mass is smaller because the weight of M + m
becomes larger by an apparent weight due to the acceleration of the elevator. Still, in all cases the shorter string
breaks first.

12.2 | Examples of Static Equilibrium

Learning Objectives

By the end of this section, you will be able to:

• Identify and analyze static equilibrium situations

• Set up a free-body diagram for an extended object in static equilibrium

• Set up and solve static equilibrium conditions for objects in equilibrium in various physical
situations

All examples in this chapter are planar problems. Accordingly, we use equilibrium conditions in the component form of
Equation 12.7 to Equation 12.9. We introduced a problem-solving strategy in Example 12.1 to illustrate the physical
meaning of the equilibrium conditions. Now we generalize this strategy in a list of steps to follow when solving static
equilibrium problems for extended rigid bodies. We proceed in five practical steps.

Problem-Solving Strategy: Static Equilibrium

1. Identify the object to be analyzed. For some systems in equilibrium, it may be necessary to consider more
than one object. Identify all forces acting on the object. Identify the questions you need to answer. Identify the
information given in the problem. In realistic problems, some key information may be implicit in the situation
rather than provided explicitly.

2. Set up a free-body diagram for the object. (a) Choose the xy-reference frame for the problem. Draw a free-
body diagram for the object, including only the forces that act on it. When suitable, represent the forces in
terms of their components in the chosen reference frame. As you do this for each force, cross out the original
force so that you do not erroneously include the same force twice in equations. Label all forces—you will need
this for correct computations of net forces in the x- and y-directions. For an unknown force, the direction must
be assigned arbitrarily; think of it as a ‘working direction’ or ‘suspected direction.’ The correct direction is
determined by the sign that you obtain in the final solution. A plus sign ( + ) means that the working direction

is the actual direction. A minus sign ( − ) means that the actual direction is opposite to the assumed working

direction. (b) Choose the location of the rotation axis; in other words, choose the pivot point with respect to
which you will compute torques of acting forces. On the free-body diagram, indicate the location of the pivot
and the lever arms of acting forces—you will need this for correct computations of torques. In the selection of
the pivot, keep in mind that the pivot can be placed anywhere you wish, but the guiding principle is that the
best choice will simplify as much as possible the calculation of the net torque along the rotation axis.

3. Set up the equations of equilibrium for the object. (a) Use the free-body diagram to write a correct equilibrium
condition Equation 12.7 for force components in the x-direction. (b) Use the free-body diagram to write a
correct equilibrium condition Equation 12.11 for force components in the y-direction. (c) Use the free-body
diagram to write a correct equilibrium condition Equation 12.9 for torques along the axis of rotation. Use
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Equation 12.10 to evaluate torque magnitudes and senses.

4. Simplify and solve the system of equations for equilibrium to obtain unknown quantities. At this point, your
work involves algebra only. Keep in mind that the number of equations must be the same as the number of
unknowns. If the number of unknowns is larger than the number of equations, the problem cannot be solved.

5. Evaluate the expressions for the unknown quantities that you obtained in your solution. Your final answers
should have correct numerical values and correct physical units. If they do not, then use the previous steps to
track back a mistake to its origin and correct it. Also, you may independently check for your numerical answers
by shifting the pivot to a different location and solving the problem again, which is what we did in Example
12.1.

Note that setting up a free-body diagram for a rigid-body equilibrium problem is the most important component in the
solution process. Without the correct setup and a correct diagram, you will not be able to write down correct conditions for
equilibrium. Also note that a free-body diagram for an extended rigid body that may undergo rotational motion is different
from a free-body diagram for a body that experiences only translational motion (as you saw in the chapters on Newton’s
laws of motion). In translational dynamics, a body is represented as its CM, where all forces on the body are attached and
no torques appear. This does not hold true in rotational dynamics, where an extended rigid body cannot be represented by
one point alone. The reason for this is that in analyzing rotation, we must identify torques acting on the body, and torque
depends both on the acting force and on its lever arm. Here, the free-body diagram for an extended rigid body helps us
identify external torques.

Example 12.3

The Torque Balance

Three masses are attached to a uniform meter stick, as shown in Figure 12.9. The mass of the meter stick is
150.0 g and the masses to the left of the fulcrum are m1 = 50.0 g and m2 = 75.0 g. Find the mass m3 that

balances the system when it is attached at the right end of the stick, and the normal reaction force at the fulcrum
when the system is balanced.

Figure 12.9 In a torque balance, a horizontal beam is supported at a
fulcrum (indicated by S) and masses are attached to both sides of the
fulcrum. The system is in static equilibrium when the beam does not
rotate. It is balanced when the beam remains level.

Strategy

For the arrangement shown in the figure, we identify the following five forces acting on the meter stick:

w1 = m1 g is the weight of mass m1; w2 = m2 g is the weight of mass m2;

w = mg is the weight of the entire meter stick; w3 = m3 g is the weight of unknown mass m3;

FS is the normal reaction force at the support point S.

We choose a frame of reference where the direction of the y-axis is the direction of gravity, the direction of the
x-axis is along the meter stick, and the axis of rotation (the z-axis) is perpendicular to the x-axis and passes through
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the support point S. In other words, we choose the pivot at the point where the meter stick touches the support.
This is a natural choice for the pivot because this point does not move as the stick rotates. Now we are ready to set
up the free-body diagram for the meter stick. We indicate the pivot and attach five vectors representing the five
forces along the line representing the meter stick, locating the forces with respect to the pivot Figure 12.10. At
this stage, we can identify the lever arms of the five forces given the information provided in the problem. For the
three hanging masses, the problem is explicit about their locations along the stick, but the information about the
location of the weight w is given implicitly. The key word here is “uniform.” We know from our previous studies
that the CM of a uniform stick is located at its midpoint, so this is where we attach the weight w, at the 50-cm
mark.

Figure 12.10 Free-body diagram for the meter stick. The
pivot is chosen at the support point S.

Solution

With Figure 12.9 and Figure 12.10 for reference, we begin by finding the lever arms of the five forces acting
on the stick:

r1 = 30.0 cm + 40.0 cm = 70.0 cm
r2 = 40.0 cm
r = 50.0 cm − 30.0 cm = 20.0 cm

rS = 0.0 cm (because FS is attached at the pivot)
r3 = 30.0 cm.

Now we can find the five torques with respect to the chosen pivot:

τ1 = +r1 w1 sin 90° = +r1 m1 g (counterclockwise rotation, positive sense)
τ2 = +r2 w2 sin 90° = +r2 m2 g (counterclockwise rotation, positive sense)
τ = +rw sin 90° = +rmg (gravitational torque)

τS = rS FS sin θS = 0 (because rS = 0 cm)
τ3 = −r3 w3 sin 90° = −r3 m3 g (clockwise rotation, negative sense)

The second equilibrium condition (equation for the torques) for the meter stick is

τ1 + τ2 + τ + τS + τ3 = 0.

When substituting torque values into this equation, we can omit the torques giving zero contributions. In this way
the second equilibrium condition is

(12.17)+r1 m1 g + r2 m2 g + rmg − r3 m3 g = 0.

Selecting the +y -direction to be parallel to F→ S, the first equilibrium condition for the stick is

−w1 − w2 − w + FS − w3 = 0.
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12.3

Substituting the forces, the first equilibrium condition becomes

(12.18)−m1 g − m2 g − mg + FS − m3 g = 0.

We solve these equations simultaneously for the unknown values m3 and FS. In Equation 12.17, we cancel

the g factor and rearrange the terms to obtain

r3 m3 = r1 m1 + r2 m2 + rm.

To obtain m3 we divide both sides by r3, so we have

(12.19)

m3 = r1
r3

m1 + r2
r3

m2 + r
r3

m

= 70
30 (50.0 g) + 40

30 (75.0 g) + 20
30 (150.0 g) = 316.02

3 g ≃ 317 g.

To find the normal reaction force, we rearrange the terms in Equation 12.18, converting grams to kilograms:

(12.20)
FS = (m1 + m2 + m + m3)g

= (50.0 + 75.0 + 150.0 + 316.7) × 10−3 kg × 9.8 m
s2 = 5.8 N.

Significance

Notice that Equation 12.17 is independent of the value of g. The torque balance may therefore be used to
measure mass, since variations in g-values on Earth’s surface do not affect these measurements. This is not the
case for a spring balance because it measures the force.

Check Your Understanding Repeat Example 12.3 using the left end of the meter stick to calculate
the torques; that is, by placing the pivot at the left end of the meter stick.

In the next example, we show how to use the first equilibrium condition (equation for forces) in the vector form given by
Equation 12.7 and Equation 12.8. We present this solution to illustrate the importance of a suitable choice of reference
frame. Although all inertial reference frames are equivalent and numerical solutions obtained in one frame are the same as
in any other, an unsuitable choice of reference frame can make the solution quite lengthy and convoluted, whereas a wise
choice of reference frame makes the solution straightforward. We show this in the equivalent solution to the same problem.
This particular example illustrates an application of static equilibrium to biomechanics.

Example 12.4

Forces in the Forearm

A weightlifter is holding a 50.0-lb weight (equivalent to 222.4 N) with his forearm, as shown in Figure 12.11.
His forearm is positioned at β = 60° with respect to his upper arm. The forearm is supported by a contraction of

the biceps muscle, which causes a torque around the elbow. Assuming that the tension in the biceps acts along the
vertical direction given by gravity, what tension must the muscle exert to hold the forearm at the position shown?
What is the force on the elbow joint? Assume that the forearm’s weight is negligible. Give your final answers in
SI units.
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Figure 12.11 The forearm is rotated around the elbow (E) by
a contraction of the biceps muscle, which causes tension

T→ M.

Strategy

We identify three forces acting on the forearm: the unknown force F→ at the elbow; the unknown tension

T→ M in the muscle; and the weight w→ with magnitude w = 50 lb. We adopt the frame of reference with

the x-axis along the forearm and the pivot at the elbow. The vertical direction is the direction of the weight,
which is the same as the direction of the upper arm. The x-axis makes an angle β = 60° with the vertical. The

y-axis is perpendicular to the x-axis. Now we set up the free-body diagram for the forearm. First, we draw the
axes, the pivot, and the three vectors representing the three identified forces. Then we locate the angle β and

represent each force by its x- and y-components, remembering to cross out the original force vector to avoid
double counting. Finally, we label the forces and their lever arms. The free-body diagram for the forearm is shown
in Figure 12.12. At this point, we are ready to set up equilibrium conditions for the forearm. Each force has
x- and y-components; therefore, we have two equations for the first equilibrium condition, one equation for each
component of the net force acting on the forearm.

Figure 12.12 Free-body diagram for the forearm: The pivot is
located at point E (elbow).

Notice that in our frame of reference, contributions to the second equilibrium condition (for torques) come only
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from the y-components of the forces because the x-components of the forces are all parallel to their lever arms,
so that for any of them we have sin θ = 0 in Equation 12.10. For the y-components we have θ = ± 90° in

Equation 12.10. Also notice that the torque of the force at the elbow is zero because this force is attached at the
pivot. So the contribution to the net torque comes only from the torques of Ty and of wy.

Solution

We see from the free-body diagram that the x-component of the net force satisfies the equation

(12.21)+Fx + Tx − wx = 0

and the y-component of the net force satisfies

(12.22)+Fy + Ty − wy = 0.

Equation 12.21 and Equation 12.22 are two equations of the first equilibrium condition (for forces). Next,
we read from the free-body diagram that the net torque along the axis of rotation is

(12.23)+rT Ty − rw wy = 0.

Equation 12.23 is the second equilibrium condition (for torques) for the forearm. The free-body diagram shows
that the lever arms are rT = 1.5 in. and rw = 13.0 in. At this point, we do not need to convert inches into SI

units, because as long as these units are consistent in Equation 12.23, they cancel out. Using the free-body
diagram again, we find the magnitudes of the component forces:

Fx = F cos β = F cos 60° = F /2
Tx = T cos β = T cos 60° = T /2
wx = w cos β = w cos 60° = w /2
Fy = F sin β = F sin 60° = F 3/2

Ty = T sin β = T sin 60° = T 3/2

wy = w sin β = w sin 60° = w 3/2.

We substitute these magnitudes into Equation 12.21, Equation 12.22, and Equation 12.23 to obtain,
respectively,

F /2 + T /2 − w /2 = 0

F 3/2 + T 3/2 − w 3/2 = 0

rT T 3/2 − rw w 3/2 = 0.

When we simplify these equations, we see that we are left with only two independent equations for the two
unknown force magnitudes, F and T, because Equation 12.21 for the x-component is equivalent to Equation
12.22 for the y-component. In this way, we obtain the first equilibrium condition for forces

(12.24)F + T − w = 0

and the second equilibrium condition for torques

(12.25)rT T − rw w = 0.

The magnitude of tension in the muscle is obtained by solving Equation 12.25:

T = rw
rT

w = 13.0
1.5 (50 lb) = 433 1

3lb ≃ 433.3 lb.

The force at the elbow is obtained by solving Equation 12.24:

F = w − T = 50.0 lb − 433.3 lb = −383.3 lb.

The negative sign in the equation tells us that the actual force at the elbow is antiparallel to the working direction
adopted for drawing the free-body diagram. In the final answer, we convert the forces into SI units of force. The
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answer is

F = 383.3 lb = 383.3(4.448 N) = 1705 N downward
T = 433.3 lb = 433.3(4.448 N) = 1927 N upward.

Significance

Two important issues here are worth noting. The first concerns conversion into SI units, which can be done at the
very end of the solution as long as we keep consistency in units. The second important issue concerns the hinge
joints such as the elbow. In the initial analysis of a problem, hinge joints should always be assumed to exert a
force in an arbitrary direction, and then you must solve for all components of a hinge force independently. In
this example, the elbow force happens to be vertical because the problem assumes the tension by the biceps to be
vertical as well. Such a simplification, however, is not a general rule.

Solution

Suppose we adopt a reference frame with the direction of the y-axis along the 50-lb weight and the pivot placed
at the elbow. In this frame, all three forces have only y-components, so we have only one equation for the first
equilibrium condition (for forces). We draw the free-body diagram for the forearm as shown in Figure 12.13,
indicating the pivot, the acting forces and their lever arms with respect to the pivot, and the angles θT and θw

that the forces T→ M and w→ (respectively) make with their lever arms. In the definition of torque given by

Equation 12.10, the angle θT is the direction angle of the vector T→ M, counted counterclockwise from the

radial direction of the lever arm that always points away from the pivot. By the same convention, the angle θw

is measured counterclockwise from the radial direction of the lever arm to the vector w→ . Done this way, the

non-zero torques are most easily computed by directly substituting into Equation 12.10 as follows:

τT = rT T sin θT = rT T sin β = rT T sin 60° = + rT T 3/2
τw = rw w sin θw = rw w sin(β + 180°) = −rw w sin β = −rw w 3/2.

Figure 12.13 Free-body diagram for the forearm for the
equivalent solution. The pivot is located at point E (elbow).

The second equilibrium condition, τT + τw = 0, can be now written as

(12.26)rT T 3/2 − rw w 3/2 = 0.

From the free-body diagram, the first equilibrium condition (for forces) is

(12.27)−F + T − w = 0.

Equation 12.26 is identical to Equation 12.25 and gives the result T = 433.3 lb. Equation 12.27 gives

F = T − w = 433.3 lb − 50.0 lb = 383.3 lb.
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12.4

We see that these answers are identical to our previous answers, but the second choice for the frame of reference
leads to an equivalent solution that is simpler and quicker because it does not require that the forces be resolved
into their rectangular components.

Check Your Understanding Repeat Example 12.4 assuming that the forearm is an object of uniform
density that weighs 8.896 N.

Example 12.5

A Ladder Resting Against a Wall

A uniform ladder is L = 5.0 m long and weighs 400.0 N. The ladder rests against a slippery vertical wall, as

shown in Figure 12.14. The inclination angle between the ladder and the rough floor is β = 53°. Find the

reaction forces from the floor and from the wall on the ladder and the coefficient of static friction µs at the

interface of the ladder with the floor that prevents the ladder from slipping.

Figure 12.14 A 5.0-m-long ladder rests against a frictionless
wall.

Strategy

We can identify four forces acting on the ladder. The first force is the normal reaction force N from the floor in
the upward vertical direction. The second force is the static friction force f = µs N directed horizontally along

the floor toward the wall—this force prevents the ladder from slipping. These two forces act on the ladder at its
contact point with the floor. The third force is the weight w of the ladder, attached at its CM located midway
between its ends. The fourth force is the normal reaction force F from the wall in the horizontal direction away
from the wall, attached at the contact point with the wall. There are no other forces because the wall is slippery,
which means there is no friction between the wall and the ladder. Based on this analysis, we adopt the frame of
reference with the y-axis in the vertical direction (parallel to the wall) and the x-axis in the horizontal direction
(parallel to the floor). In this frame, each force has either a horizontal component or a vertical component but
not both, which simplifies the solution. We select the pivot at the contact point with the floor. In the free-body
diagram for the ladder, we indicate the pivot, all four forces and their lever arms, and the angles between lever
arms and the forces, as shown in Figure 12.15. With our choice of the pivot location, there is no torque either
from the normal reaction force N or from the static friction f because they both act at the pivot.
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Figure 12.15 Free-body diagram for a ladder resting against a
frictionless wall.

Solution

From the free-body diagram, the net force in the x-direction is

(12.28)+ f − F = 0

the net force in the y-direction is

(12.29)+N − w = 0

and the net torque along the rotation axis at the pivot point is

(12.30)τw + τF = 0.

where τw is the torque of the weight w and τF is the torque of the reaction F. From the free-body diagram,

we identify that the lever arm of the reaction at the wall is rF = L = 5.0 m and the lever arm of the weight

is rw = L /2 = 2.5 m. With the help of the free-body diagram, we identify the angles to be used in Equation

12.10 for torques: θF = 180° − β for the torque from the reaction force with the wall, and

θw = 180° + (90° − β) for the torque due to the weight. Now we are ready to use Equation 12.10 to compute

torques:

τw = rw w sin θw = rw w sin(180° + 90° − β) = − L
2w sin(90° − β) = − L

2w cos β

τF = rF F sin θF = rF F sin(180° − β) = LF sin β.

We substitute the torques into Equation 12.30 and solve for F :

(12.31)− L
2w cos β + LF sin β = 0

F = w
2 cot β = 400.0 N

2 cot 53° = 150.7 N

We obtain the normal reaction force with the floor by solving Equation 12.29: N = w = 400.0 N. The
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12.5

magnitude of friction is obtained by solving Equation 12.28: f = F = 150.7 N. The coefficient of static

friction is µs = f / N = 150.7/400.0 = 0.377.

The net force on the ladder at the contact point with the floor is the vector sum of the normal reaction from the
floor and the static friction forces:

F→ floo = f
→

+ N→ = (150.7 N)(− i
^

) + (400.0 N)( + j
^

) = (−150.7 i
^

+ 400.0 j
^

) N.

Its magnitude is

Ffloo = f 2 + N 2 = 150.72 + 400.02 N = 427.4 N

and its direction is

φ = tan−1 ⎛
⎝N / f ⎞

⎠ = tan−1 (400.0 /150.7) = 69.3° above the floo .

We should emphasize here two general observations of practical use. First, notice that when we choose a pivot
point, there is no expectation that the system will actually pivot around the chosen point. The ladder in this
example is not rotating at all but firmly stands on the floor; nonetheless, its contact point with the floor is a good
choice for the pivot. Second, notice when we use Equation 12.10 for the computation of individual torques,
we do not need to resolve the forces into their normal and parallel components with respect to the direction of
the lever arm, and we do not need to consider a sense of the torque. As long as the angle in Equation 12.10
is correctly identified—with the help of a free-body diagram—as the angle measured counterclockwise from the
direction of the lever arm to the direction of the force vector, Equation 12.10 gives both the magnitude and
the sense of the torque. This is because torque is the vector product of the lever-arm vector crossed with the
force vector, and Equation 12.10 expresses the rectangular component of this vector product along the axis of
rotation.

Significance

This result is independent of the length of the ladder because L is cancelled in the second equilibrium condition,
Equation 12.31. No matter how long or short the ladder is, as long as its weight is 400 N and the angle with the
floor is 53°, our results hold. But the ladder will slip if the net torque becomes negative in Equation 12.31.

This happens for some angles when the coefficient of static friction is not great enough to prevent the ladder from
slipping.

Check Your Understanding For the situation described in Example 12.5, determine the values of the
coefficient µs of static friction for which the ladder starts slipping, given that β is the angle that the ladder

makes with the floor.

Example 12.6

Forces on Door Hinges

A swinging door that weighs w = 400.0 N is supported by hinges A and B so that the door can swing about a

vertical axis passing through the hinges Figure 12.16. The door has a width of b = 1.00 m, and the door slab

has a uniform mass density. The hinges are placed symmetrically at the door’s edge in such a way that the door’s
weight is evenly distributed between them. The hinges are separated by distance a = 2.00 m. Find the forces on

the hinges when the door rests half-open.
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Figure 12.16 A 400-N swinging vertical door is supported by
two hinges attached at points A and B.

Strategy

The forces that the door exerts on its hinges can be found by simply reversing the directions of the forces that the
hinges exert on the door. Hence, our task is to find the forces from the hinges on the door. Three forces act on

the door slab: an unknown force A
→

from hinge A, an unknown force B→ from hinge B, and the known

weight w→ attached at the center of mass of the door slab. The CM is located at the geometrical center of the

door because the slab has a uniform mass density. We adopt a rectangular frame of reference with the y-axis
along the direction of gravity and the x-axis in the plane of the slab, as shown in panel (a) of Figure 12.17,
and resolve all forces into their rectangular components. In this way, we have four unknown component forces:

two components of force A
→ ⎛

⎝Ax and Ay
⎞
⎠, and two components of force B→ (Bx and By

⎞
⎠. In the free-

body diagram, we represent the two forces at the hinges by their vector components, whose assumed orientations
are arbitrary. Because there are four unknowns ⎛

⎝Ax, Bx, Ay, and By
⎞
⎠, we must set up four independent

equations. One equation is the equilibrium condition for forces in the x-direction. The second equation is the
equilibrium condition for forces in the y-direction. The third equation is the equilibrium condition for torques in
rotation about a hinge. Because the weight is evenly distributed between the hinges, we have the fourth equation,
Ay = By. To set up the equilibrium conditions, we draw a free-body diagram and choose the pivot point at the

upper hinge, as shown in panel (b) of Figure 12.17. Finally, we solve the equations for the unknown force
components and find the forces.
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Figure 12.17 (a) Geometry and (b) free-body diagram for the door.

Solution

From the free-body diagram for the door we have the first equilibrium condition for forces:

in x-direction: −Ax + Bx = 0 ⇒ Ax = Bx

in y-direction: +Ay + By − w = 0 ⇒ Ay = By = w
2 = 400.0 N

2 = 200.0 N.

We select the pivot at point P (upper hinge, per the free-body diagram) and write the second equilibrium condition
for torques in rotation about point P:

(12.32)pivot at P: τw + τBx + τBy = 0.

We use the free-body diagram to find all the terms in this equation:

τw = dw sin(−β) = −dw sin β = −dwb /2
d = −wb

2
τBx = aBx sin 90° = + aBx
τBy = aBy sin 180° = 0.

In evaluating sin β, we use the geometry of the triangle shown in part (a) of the figure. Now we substitute these

torques into Equation 12.32 and compute Bx :

pivot at P: −w b
2 + aBx = 0 ⇒ Bx = w b

2a = (400.0 N) 1
2 · 2 = 100.0 N.

Therefore the magnitudes of the horizontal component forces are Ax = Bx = 100.0 N. The forces on the door

are

at the upper hinge: F→ A on door = −100.0 N i
^

+ 200.0 N j
^

at the lower hinge: F→ B on door = +100.0 N i
^

+ 200.0 N j
^

.

The forces on the hinges are found from Newton’s third law as

on the upper hinge: F→ door on A = 100.0 N i
^

− 200.0 N j
^

on the lower hinge: F→ door on B = −100.0 N i
^

− 200.0 N j
^

.
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12.6

12.7

12.8

Significance

Note that if the problem were formulated without the assumption of the weight being equally distributed between
the two hinges, we wouldn’t be able to solve it because the number of the unknowns would be greater than the
number of equations expressing equilibrium conditions.

Check Your Understanding Solve the problem in Example 12.6 by taking the pivot position at the
center of mass.

Check Your Understanding A 50-kg person stands 1.5 m away from one end of a uniform 6.0-m-long
scaffold of mass 70.0 kg. Find the tensions in the two vertical ropes supporting the scaffold.

Check Your Understanding A 400.0-N sign hangs from the end of a uniform strut. The strut is 4.0 m
long and weighs 600.0 N. The strut is supported by a hinge at the wall and by a cable whose other end is tied to
the wall at a point 3.0 m above the left end of the strut. Find the tension in the supporting cable and the force of
the hinge on the strut.
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